Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.144
Filtrar
1.
Parasit Vectors ; 17(1): 111, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448975

RESUMO

Toxoplasmosis is a zoonosis caused by Toxoplasma gondii (T. gondii). The current treatment for toxoplasmosis remains constrained due to the absence of pharmaceutical interventions. Thus, the pursuit of more efficient targets is of great importance. Lipid metabolism in T. gondii, including fatty acid metabolism, phospholipid metabolism, and neutral lipid metabolism, assumes a crucial function in T. gondii because those pathways are largely involved in the formation of the membranous structure and cellular processes such as division, invasion, egress, replication, and apoptosis. The inhibitors of T. gondii's lipid metabolism can directly lead to the disturbance of various lipid component levels and serious destruction of membrane structure, ultimately leading to the death of the parasites. In this review, the specific lipid metabolism pathways, correlative enzymes, and inhibitors of lipid metabolism of T. gondii are elaborated in detail to generate novel ideas for the development of anti-T. gondii drugs that target the parasites' lipid metabolism.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Metabolismo dos Lipídeos , Apoptose , Zoonoses , Toxoplasmose/tratamento farmacológico
2.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474432

RESUMO

Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii that is highly prevalent worldwide. Although the infection is asymptomatic in immunocompetent individuals, it severely affects immunocompromised individuals, causing conditions such as encephalitis, myocarditis, or pneumonitis. The limited therapeutic efficacy of drugs currently used to treat toxoplasmosis has prompted the search for new therapeutic alternatives. The aim of this study was to determine the anti-Toxoplasma activity of extracts obtained from two species of the genus Tabebuia. Twenty-six extracts, 12 obtained from Tabebuia chrysantha and 14 from Tabebuia rosea, were evaluated by a colorimetric technique using the RH strain of T. gondii that expresses ß-galactosidase. Additionally, the activity of the promising extracts and their active compounds was evaluated by flow cytometry. ß-amyrin was isolated from the chloroform extract obtained from the leaves of T. rosea and displayed important anti-Toxoplasma activity. The results show that natural products are an important source of new molecules with considerable biological and/or pharmacological activity.


Assuntos
Encefalite , Ácido Oleanólico/análogos & derivados , Tabebuia , Toxoplasma , Toxoplasmose , Humanos , Toxoplasmose/tratamento farmacológico
3.
Parasit Vectors ; 17(1): 59, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341599

RESUMO

BACKGROUND: Toxoplasma gondii is an important protozoan pathogen with medical and veterinary importance worldwide. Drugs currently used for treatment of toxoplasmosis are less effective and sometimes cause serious side effects. There is an urgent need for the development of more effective drugs with relatively low toxicity. METHODS: The effect of tylosin on the viability of host cells was measured using CCK8 assays. To assess the inhibition of tylosin on T. gondii proliferation, a real-time PCR targeting the B1 gene was developed for T. gondii detection and quantification. Total RNA was extracted from parasites treated with tylosin and then subjected to transcriptome analysis by RNA sequencing (RNA-seq). Finally, murine infection models of toxoplasmosis were used to evaluate the protective efficacy of tylosin against T. gondii virulent RH strain or avirulent ME49 strain. RESULTS: We found that tylosin displayed low host toxicity, and its 50% inhibitory concentration was 175.3 µM. Tylsoin also inhibited intracellular T. gondii tachyzoite proliferation, with a 50% effective concentration of 9.759 µM. Transcriptome analysis showed that tylosin remarkably perturbed the gene expression of T. gondii, and genes involved in "ribosome biogenesis (GO:0042254)" and "ribosome (GO:0005840)" were significantly dys-regulated. In a murine model, tylosin treatment alone (100 mg/kg, i.p.) or in combination with sulfadiazine sodium (200 mg/kg, i.g.) significantly prolonged the survival time and raised the survival rate of animals infected with T. gondii virulent RH or avirulent ME49 strain. Meanwhile, treatment with tylosin significantly decreased the parasite burdens in multiple organs and decreased the spleen index of mice with acute toxoplasmosis. CONCLUSIONS: Our findings suggest that tylosin exhibited potency against T. gondii both in vitro and in vivo, which offers promise for treatment of human toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Animais , Camundongos , Tilosina/farmacologia , Tilosina/uso terapêutico , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Sulfadiazina/farmacologia , Sulfadiazina/uso terapêutico , Baço
4.
Parasit Vectors ; 17(1): 96, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424591

RESUMO

BACKGROUND: Toxoplasmosis is a zoonotic disease caused by the infection of the protozoa Toxoplasma gondii (T. gondii), and safe and effective therapeutic drugs are lacking. Mitochondria, is an important organelle that maintains T. gondii survival, however, drugs targeting mitochondria are lacking. METHODS: The cytotoxicity of BAM15 was detected by CCK-8 and the in vitro effects of BAM15 was detected by qPCR, plaque assay and flow cytometry. Furthermore, the ultrastructural changes of T. gondii after BAM15 treatment were observed by transmission electron microscopy, and further the mitochondrial membrane potential (ΔΨm), ATP level and reactive oxygen species (ROS) of T. gondii after BAM15 treatment were detected. The pharmacokinetic experiments and in vivo infection assays were performed in mice to determine the in vivo effect of BAM15. RESULTS: BAM15 had excellent anti-T. gondii activity in vitro and in vivo with an EC50 value of 1.25 µM, while the IC50 of BAM15 in Vero cells was 27.07 µM. Notably, BAM15 significantly inhibited proliferation activity of T. gondii RH strain and Prugniaud strain (PRU), caused T. gondii death. Furthermore, BAM15 treatment induced T. gondii mitochondrial vacuolation and autolysis by TEM. Moreover, the decrease in ΔΨm and ATP level, as well as the increase in ROS production further confirmed the changes CONCLUSIONS: Our study identifies a useful T. gondii mitochondrial inhibitor, which may also serve as a leading molecule to develop therapeutic mitochondrial inhibitors in toxoplasmosis.'


Assuntos
Doenças dos Roedores , Toxoplasma , Toxoplasmose , Chlorocebus aethiops , Animais , Camundongos , Células Vero , Espécies Reativas de Oxigênio , Toxoplasmose/tratamento farmacológico , Mitocôndrias , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico
5.
Int Immunopharmacol ; 126: 111254, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995571

RESUMO

Toxoplasma gondii (T. gondii)-derived heat shock protein 70 (T.g.HSP70) is a toxic protein that downregulates host defense responses against T. gondii infection. T.g.HSP70 was proven to induce fatal anaphylaxis in T. gondii infected mice through cytosolic phospholipase A2 (cPLA2) activated-platelet-activating factor (PAF) production via Toll-like receptor 4 (TLR4)-mediated signaling. In this study, we investigated the effect of arctiin (ARC; a major lignan compound of Fructus arctii) on allergic liver injury using T.g.HSP70-stimulated murine liver cell line (NCTC 1469) and a mouse model of T. gondii infection. Localized surface plasmon resonance, ELISA, western blotting, co-immunoprecipitation, and immunofluorescence were used to investigate the underlying mechanisms of action of ARC on T. gondii-induced allergic acute liver injury. The results showed that ARC suppressed the T.g.HSP70-induced allergic liver injury in a dose-dependent manner. ARC could directly bind to T.g.HSP70 or TLR4, interfering with the interaction between these two factors, and inhibiting activation of the TLR4/mitogen-activated protein kinase/nuclear factor-kappa B signaling, thereby inhibiting the overproduction of cPLA2, PAF, and interferon-γ. This result suggested that ARC ameliorates T.g.HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of inflammatory mediators, providing a theoretical basis for ARC therapy to improve T.g.HSP70-induced allergic liver injury.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Toxoplasma/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Ativação de Plaquetas , Toxoplasmose/tratamento farmacológico , Proteínas de Choque Térmico HSP70/metabolismo , Fígado/metabolismo , Fosfolipases/metabolismo
6.
Expert Opin Drug Discov ; 19(1): 97-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37921660

RESUMO

INTRODUCTION: Toxoplasmosis constitutes a challenge for public health, animal production and welfare. Since more than 60 years, only a limited panel of drugs has been in use for clinical applications. AREAS COVERED: Herein, the authors describe the methodology and the results of library screening approaches to identify inhibitors of Toxoplasma gondii and related strains. The authors then provide the reader with their expert perspectives for the future. EXPERT OPINION: Various library screening projects, in particular those using reporter strains, have led to the identification of numerous compounds with good efficacy and specificity in vitro. However, only few compounds are effective in suitable animal models such as rodents. Whereas no novel compound has cleared the hurdle to applications in humans, the few compounds with known indication and application profiles in human patients are of interest for further investigations. Taken together, drug repurposing as well as high-throughput screening of novel compound libraries may shorten the way to novel drugs against toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Toxoplasmose/tratamento farmacológico , Ensaios de Triagem em Larga Escala
7.
Parasitol Res ; 123(1): 69, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135783

RESUMO

Toxoplasmosis is a worldwide zoonosis caused by the protozoan parasite Toxoplasma gondii. Although this infection is generally asymptomatic in immunocompetent individuals, it can cause serious clinical manifestations in newborns with congenital infection or in immunocompromised patients. As current treatments are not always well tolerated, there is an urgent need to find new drugs against human toxoplasmosis. Drug repurposing has gained considerable momentum in the last decade and is a particularly attractive approach for the search of therapeutic alternatives to treat rare and neglected diseases. Thus, in this study, we investigated the antiproliferative effect of several repurposed drugs. Of these, clofazimine and triclabendazole displayed a higher selectivity against T. gondii, affecting its replication. Furthermore, both compounds inhibited spermine incorporation into the parasite, which is necessary for the formation of other polyamines. The data reported here indicate that clofazimine and triclabendazole could be used for the treatment of human toxoplasmosis and confirms that drug repurposing is an excellent strategy to find new therapeutic targets of intervention.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Recém-Nascido , Triclabendazol/farmacologia , Espermina , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
8.
Vet Res ; 54(1): 123, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115043

RESUMO

Toxoplasma gondii is a zoonotic parasite that infects one-third of the world's population and nearly all warm-blooded animals. Due to the complexity of T. gondii's life cycle, available treatment options have limited efficacy. Thus, there is an urgent need to develop new compounds or repurpose existing drugs with potent anti-Toxoplasma activity. This study demonstrates that bedaquiline (BDQ), an FDA-approved diarylquinoline antimycobacterial drug for the treatment of tuberculosis, potently inhibits the tachyzoites of T. gondii. At a safe concentration, BDQ displayed a dose-dependent inhibition on T. gondii growth with a half-maximal effective concentration (EC50) of 4.95 µM. Treatment with BDQ significantly suppressed the proliferation of T. gondii tachyzoites in the host cell, while the invasion ability of the parasite was not affected. BDQ incubation shrunk the mitochondrial structure and decreased the mitochondrial membrane potential and ATP level of T. gondii parasites. In addition, BDQ induced elevated ROS and led to autophagy in the parasite. By transcriptomic analysis, we found that oxidative phosphorylation pathway genes were significantly disturbed by BDQ-treated parasites. More importantly, BDQ significantly reduces brain cysts for the chronically infected mice. These results suggest that BDQ has potent anti-T. gondii activity and may impair its mitochondrial function by affecting proton transport. This study provides bedaquiline as a potential alternative drug for the treatment of toxoplasmosis, and our findings may facilitate the development of new effective drugs for the treatment of toxoplasmosis.


Assuntos
Doenças Mitocondriais , Toxoplasma , Toxoplasmose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Doenças Mitocondriais/veterinária , Toxoplasma/genética , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
9.
Exp Parasitol ; 255: 108655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981259

RESUMO

In previous studies, the artemisinin derivatives artemisone, its pro-drug artemiside and the bumped-kinase inhibitor BKI-1748 were effective against T. gondii via different modes of action. This suggests that they may act synergistically resulting in improved efficacies in vitro and in vivo. To test this hypothesis, the compounds were applied alone and in combination to T. gondii infected human fibroblast host cells in order to determine their inhibition constants and effects on cellular ultrastructure. In addition, the efficacy of either single- or combined treatments were assessed in an acute TgShSp1-oocyst infection model based on CD1 outbred mice. Whereas the IC50 of the compounds in combination (42 nM) was close to the IC50 of BKI-1748 alone (46 nM) and half of the IC50 of artemisone alone (92 nM), the IC90 of the combination was half of the values found with the single compounds (138 nM vs. ca. 270 nM). Another indication for synergistic effects in vitro were distinct alterations of the cellular ultrastructure of tachyzoites observed in combination, but not with the single compounds. These promising results could not be reproduced in vivo. There was no decrease in number of T. gondii positive brains by either treatment. However, the levels of infection in these brains, i. e. the number of tachyzoites, was significantly decreased upon BKI-1748 treatment alone, and the combination with artemiside did not produce any further decrease. The treatment with artemiside alone had no significant effects. A vertical transmission model could not be established since artemiside strongly interfered with pregnancy and caused abortion. These results show that is difficult to extrapolate from promising in vitro results to the situation in vivo.


Assuntos
Antineoplásicos , Artemisininas , Toxoplasma , Toxoplasmose , Gravidez , Feminino , Camundongos , Humanos , Animais , Toxoplasmose/tratamento farmacológico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Transmissão Vertical de Doenças Infecciosas , Antineoplásicos/farmacologia
10.
Antimicrob Agents Chemother ; 67(11): e0066123, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37850734

RESUMO

Toxoplasmosis is a critical health issue for immune-deficient individuals and the offspring of newly infected mothers. It is caused by a unicellular intracellular parasite called Toxoplasma gondii that is found worldwide. Although efficient drugs are commonly used to treat toxoplasmosis, serious adverse events are common. Therefore, new compounds with potent anti-T. gondii activity are needed to provide better suited treatments. We have tested compounds designed to target specifically histone deacetylase enzymes. Among the 55 compounds tested, we identified three compounds showing a concentration of drug required for 50% inhibition (IC50) in the low 100 nM range with a selectivity index of more than 100. These compounds are not only active at inhibiting the growth of the parasite in vitro but also at preventing some of the consequences of the acute disease in vivo. Two of these hydroxamate based compound also induce a hyper-acetylation of the parasite histones while the parasitic acetylated tubulin level remains unchanged. These findings suggest that the enzymes regulating histone acetylation are potent therapeutic targets for the treatment of acute toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico
11.
Eur J Med Chem ; 262: 115885, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871407

RESUMO

The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Feminino , Gravidez , Toxoplasmose/tratamento farmacológico , Atovaquona/metabolismo , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Trimetoprima/farmacologia , Mamíferos
12.
Pediatr Infect Dis J ; 42(11): e411-e415, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862699

RESUMO

INTRODUCTION: Childhood immune thrombocytopenic purpura (ITP) is a heterogeneous immune-mediated process triggered by infections, vaccines, allergies and parasites. Currently, there is little evidence in the literature beyond case reports of an association with Toxoplasma gondii (T. gondii). METHODS: The authors describe the unusual case of an earlier healthy 2.5-year-old Greek boy who developed acute ITP with a life-threatening platelet count a few days after a T. gondii infection. Evidence for the infection onset was found incidentally 3 months after the initial admission to the hospital and only after any other plausible cause of thrombocytopenia was excluded, according to diagnosis guidelines. RESULTS: The boy underwent 3 intravenous immunoglobulin treatments within a trimester, a period during which his alarming platelets count levels led to housebound activities. A quite slow recovery was only ignited after the third treatment, which was administered in conjunction with a mild antibiotic medication for the T. gondii infection. Full recovery was obtained 9 months after the initial admission, although the boy's potential scored high in clinical prediction models for developing transient ITP. CONCLUSION: There is a need for more research on ITPs with no obvious cause to investigate a causal association with toxoplasmosis. Currently, testing for diseases of greater rarity and of higher diagnostic cost than T. gondii is included in the ITP guidelines. Hence, routinely testing for toxoplasmosis when considering potential childhood ITP triggers and infection treatment complementary to treating the ITP might be the key to accelerating the healing process and improving the quality of life of otherwise confined children.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Toxoplasma , Toxoplasmose , Criança , Masculino , Humanos , Pré-Escolar , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/etiologia , Púrpura Trombocitopênica Idiopática/terapia , Qualidade de Vida , Grécia , Trombocitopenia/complicações , Toxoplasmose/complicações , Toxoplasmose/diagnóstico , Toxoplasmose/tratamento farmacológico
13.
Biomed Pharmacother ; 166: 115356, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666178

RESUMO

Toxoplasma gondii, an intracellular parasite, has shown drug resistance and therapeutic failure in recent years. Dimedone (DIM) has been introduced as a new chemical compound with anti-bacterial and anti-cancer properties. The aim of this study was to investigate the potential protective role of DIM nanoparticles in an animal model of toxoplasmosis. Cytotoxicity of DIM on Vero cell line assessed using MTT, and the effect of DIM on Toxoplasma gondii was evaluated by counting the number of parasites compared to the control group in vitro. The rate of pathogenesis and virulence of the parasite was checked on the liver cells of the animal model using hematoxylin-eosin staining. Furthermore, various parameters indicating oxidative stress were compared in mouse liver tissue in different groups. The release of the nanoparticle form was significantly longer than the free drugs. The IC50 of Nano-DIM was 60 µM and the reduction of intracellular parasite proliferation in the group Nano-DIM and Nano-PYR (Nano-primethamine) was significantly lower than the free drugs in vitro. Histopathology examination in the groups treated with dimedone nanomedicine showed that the degree of disintegration of the epithelium of the central vein of the liver and infiltration and vacuolization of liver cells were lower compared to the toxoplasmosis group. Additionally, the level of some oxidative stress indicators was observed to be lower in the nano-treated groups compared to other groups. The results of this study showed DIM can be used as a promising compound for anti-T. gondii activity and can prevent the proliferation of it in cells.


Assuntos
Nanopartículas , Toxoplasma , Toxoplasmose , Animais , Camundongos , Cicloexanonas , Toxoplasmose/tratamento farmacológico
14.
PLoS Negl Trop Dis ; 17(9): e0011544, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773943

RESUMO

BACKGROUND: We evaluate the drug treatment for pregnant women with acute toxoplasmosis to reduce the risk of congenital infection, side effects (prenatal and postnatal treatment in children) and the hazard of discontinuing the infant's medication. METHODS: We conducted a prospective cohort study to assess the risks of congenital toxoplasmosis among children born to acutely infected women with and without treatment. We examined the relationship between "exposed" and "infected children", "number of infant neutrophils", "prenatal" and "postnatal treatment". Factor analysis of mixed data (FAMD) was used to analyze the data. All children started treatment at the hospital. FINDINGS: Between 2017 and 2021, 233 pregnant women were evaluated at the University Hospital of Maringá; ninety-four met criteria for acute gestational toxoplasmosis. We followed up 61 children; eleven (18%) had the infection confirmed and 50 (82%) were free of toxoplasmosis (exposed). Children born to untreated mothers have 6.5-times higher risk of being infected; the transmission rate among untreated mothers was 50% versus 8.3% among treated ones. Three decreasing values of immunoglobulin G were a security parameter for stopping the child's medication in the exposed group (50/61). Neutropenia was the leading side effect among children and the infected had a 2.7 times higher risk. There was no correlation between maternal use of pyrimethamine and children's neutropenia. INTERPRETATION: The follow-up of women with acute T. gondii infection and their children, through a multidisciplinary team, availability of anti-T. gondii serology and pre- and post-natal treatments reduced the risk of toxoplasmosis transmission.


Assuntos
Neutropenia , Complicações Infecciosas na Gravidez , Complicações Parasitárias na Gravidez , Toxoplasma , Toxoplasmose Congênita , Toxoplasmose , Lactente , Humanos , Feminino , Gravidez , Criança , Estudos de Coortes , Complicações Infecciosas na Gravidez/tratamento farmacológico , Estudos Prospectivos , Brasil/epidemiologia , Toxoplasmose/tratamento farmacológico , Toxoplasmose Congênita/tratamento farmacológico , Toxoplasmose Congênita/epidemiologia , Complicações Parasitárias na Gravidez/tratamento farmacológico
15.
PLoS One ; 18(7): e0288335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418497

RESUMO

Toxoplasmosis, caused by the obligate intracellular parasite Toxoplasma gondii, affects about one-third of the world's population and can cause severe congenital, neurological and ocular issues. Current treatment options are limited, and there are no human vaccines available to prevent transmission. Drug repurposing has been effective in identifying anti-T. gondii drugs. In this study, the screening of the COVID Box, a compilation of 160 compounds provided by the "Medicines for Malaria Venture" organization, was conducted to explore its potential for repurposing drugs to combat toxoplasmosis. The objective of the present work was to evaluate the compounds' ability to inhibit T. gondii tachyzoite growth, assess their cytotoxicity against human cells, examine their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, and investigate the potential of one candidate drug through an experimental chronic model of toxoplasmosis. Early screening identified 29 compounds that could inhibit T. gondii survival by over 80% while keeping human cell survival up to 50% at a concentration of 1 µM. The Half Effective Concentrations (EC50) of these compounds ranged from 0.04 to 0.92 µM, while the Half Cytotoxic Concentrations (CC50) ranged from 2.48 to over 50 µM. Almitrine was chosen for further evaluation due to its favorable characteristics, including anti-T. gondii activity at nanomolar concentrations, low cytotoxicity, and ADMET properties. Administering almitrine bismesylate (Vectarion®) orally at dose of 25 mg/kg/day for ten consecutive days resulted in a statistically significant (p < 0.001) reduction in parasite burden in the brains of mice chronically infected with T. gondii (ME49 strain). This was determined by quantifying the RNA of living parasites using real-time PCR. The presented results suggest that almitrine may be a promising drug candidate for additional experimental studies on toxoplasmosis and provide further evidence of the potential of the MMV collections as a valuable source of drugs to be repositioned for infectious diseases.


Assuntos
COVID-19 , Malária , Toxoplasma , Toxoplasmose , Animais , Camundongos , Almitrina/farmacologia , Almitrina/uso terapêutico , Reposicionamento de Medicamentos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
16.
PLoS Negl Trop Dis ; 17(7): e0011447, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410712

RESUMO

BACKGROUND: Although, approximately 30% of the world's population is estimated to be infected with Toxoplasma gondii (T. gondii) with serious manifestations in immunocompromised patients and pregnant females, the available treatment options for toxoplasmosis are limited with serious side effects. Therefore, it is of great importance to identify novel potent, well tolerated candidates for treatment of toxoplasmosis. The present study aimed to evaluate the effect of Zinc oxide nanoparticles (ZnO NPs) synthesized using Zingiber officinale against acute toxoplasmosis in experimentally infected mice. METHODS: The ethanolic extract of ginger was used to prepare ZnO NPs. The produced ZnO NPs were characterized in terms of structure and morphology using Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), UV- spectroscopy and scanning electron microscopy (SEM). The prepared formula was used in treatment of T. gondii RH virulent strain. Forty animals were divided into four groups, with ten mice per group. The first group was the uninfected, control group. The second group was infected but untreated. The third and the fourth groups received ZnO NPs and Spiramycin orally in a dose of 10 mg/kg and 200 mg/kg/day respectively. The effect of the used formulas on the animals survival rate, parasite burden, liver enzymes -including Alanine transaminase (ALT) and aspartate transaminase (AST)-, nitric oxide (NO) and Catalase antioxidant enzyme (CAT) activity was measured. Moreover, the effect of treatment on histopathological alterations associated with toxoplasmosis was examined. RESULTS: Mice treated with ZnO NPs showed the longest survival time with significant reduction in the parasite load in the livers and peritoneal fluids of the same group. Moreover, ZnO NPs treatment was associated with a significant reduction in the level of liver enzymes (ALT, AST) and NO and a significant increase in the antioxidant activity of CAT enzyme. SEM examination of tachyzoites from the peritoneal fluid showed marked distortion of T. gondii tachyzoites isolated from mice treated with ZnO NPs in comparison to untreated group. T. gondii induced histopathological alterations in the liver and brain were reversed by ZnO NPs treatment with restoration of normal tissue morphology. CONCLUSION: The produced formula showed a good therapeutic potential in treatment of murine toxoplasmosis as demonstrated by prolonged survival rate, reduced parasite burden, improved T. gondii associated liver injury and histopathological alterations. Thus, we assume that the protective effect observed in the current research is attributed to the antioxidant capability of NPs. Based on the results obtained from the current work, we suggest greenly produced ZnO NPs as a chemotherapeutic agent with good therapeutic potential and high levels of safety in the treatment of toxoplasmosis.


Assuntos
Nanopartículas , Parasitos , Toxoplasma , Toxoplasmose , Óxido de Zinco , Feminino , Camundongos , Animais , Óxido de Zinco/uso terapêutico , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antioxidantes , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Nanopartículas/química , Modelos Animais de Doenças
17.
Microb Pathog ; 181: 106206, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331670

RESUMO

Toxoplasmosis is a zoonotic protozoal disease affecting approximately one-third of the world's population. The lack of current treatment options necessitates the development of drugs with good tolerance and effectiveness on the active and cystic stages of the parasite. The present study was established to investigate, for the first time, the potential potency of clofazimine (CFZ) against acute and chronic experimental toxoplasmosis. For this purpose, the type II T. gondii (Me49 strain) was used for induction acute (20 cysts in each mouse) and chronic (10 cysts in each mouse) experimental toxoplasmosis. The mice were treated with 20 mg/kg of CFZ intraperitoneally and orally. The histopathological changes, brain cyst count, total Antioxidant Capacity (TAC), malondialdehyde (MDA) assay, and the level of INF-γ were also evaluated. In the acute toxoplasmosis, both IP and oral administration of CFZ induced a significant reduction in brain parasite burden by 90.2 and 89%, respectively, and increased the survival rate to 100% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 85.71 and 76.18% in CFZ-treated subgroups in comparison to infected untreated controls. In addition, 87.5% and 100% of CFZ-treated subgroups survived versus untreated control 62.5%. Moreover, CFZ significantly increased INF-γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were considerably reduced in the CFZ-treated chronic subgroups. CFZ treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. In conclusion, CFZ showed a promising finding regarding the ability to reduce cyst burden in acute and chronic infection. Further studies are needed to investigate the therapeutic role of CFZ on toxoplasmosis using the long-term treatment and more advanced approaches. In addition, clofazimine may need to be accompanied by another drug to augment its effect and prevent the regrowth of parasites.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Infecção Persistente , Toxoplasmose/tratamento farmacológico , Toxoplasmose/patologia , Encéfalo/patologia , Zoonoses
18.
Front Cell Infect Microbiol ; 13: 1175409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287468

RESUMO

The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a global disease that significantly impacts human health. The clinical manifestations are mainly observed in immunocompromised patients, including ocular damage and neuronal alterations leading to psychiatric disorders. The congenital infection leads to miscarriage or severe alterations in the development of newborns. The conventional treatment is limited to the acute phase of illness, without effects in latent parasites; consequently, a cure is not available yet. Furthermore, considerable toxic effects and long-term therapy contribute to high treatment abandonment rates. The investigation of exclusive parasite pathways would provide new drug targets for more effective therapies, eliminating or reducing the side effects of conventional pharmacological approaches. Protein kinases (PKs) have emerged as promising targets for developing specific inhibitors with high selectivity and efficiency against diseases. Studies in T. gondii have indicated the presence of exclusive PKs without homologs in human cells, which could become important targets for developing new drugs. Knockout of specific kinases linked to energy metabolism have shown to impair the parasite development, reinforcing the essentiality of these enzymes in parasite metabolism. In addition, the specificities found in the PKs that regulate the energy metabolism in this parasite could bring new perspectives for safer and more efficient therapies for treating toxoplasmosis. Therefore, this review provides an overview of the limitations for reaching an efficient treatment and explores the role of PKs in regulating carbon metabolism in Toxoplasma, discussing their potential as targets for more applied and efficient pharmacological approaches.


Assuntos
Transtornos Mentais , Toxoplasma , Toxoplasmose , Humanos , Recém-Nascido , Proteínas Quinases/metabolismo , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Toxoplasma/metabolismo
19.
BMC Res Notes ; 16(1): 82, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202827

RESUMO

OBJECTIVE: Ganoderma extracts have the potential to be used as anti-cancer, anti-inflammatory, immunomodulator, and antimicrobial agents, as evaluated in numerous studies. This study was aimed to determine the lethal and inhibitory effects of aqueous, hydroalcoholic, and alcoholic extracts of Ganoderma lucidum on Toxoplasma gondii RH strain tachyzoites, in vitro. RESULTS: All three types of extracts showed toxoplasmacidal effects. The highest percentage of mortality was related to hydroalcoholic extract. The EC50 of Ganoderma extracts for tachyzoites were 76.32, 3.274, and 40.18 for aqueous, hydroalcoholic and alcoholic extracts, respectively. The selectivity index obtained for hydroalcoholic extract was 71.22, showing the highest activity compared to other extracts. According to our findings, the hydroalcoholic part was the most effective substance among the extracts. This basic study showed obvious anti-toxoplasma effect of Ganoderma lucidum extracts. These extracts can be used as candidates for further in-depth and comprehensive studies especially In vivo experiments to prevent toxoplasmosis.


Assuntos
Anti-Infecciosos , Ganoderma , Reishi , Toxoplasma , Toxoplasmose , Humanos , Toxoplasmose/tratamento farmacológico , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
20.
Expert Opin Ther Targets ; 27(4-5): 293-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212443

RESUMO

INTRODUCTION: Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED: Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION: Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Descoberta de Drogas , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...